3.1.10 \(\int \cos ^2(e+f x) (a+a \sin (e+f x))^{3/2} (c-c \sin (e+f x))^{5/2} \, dx\) [10]

3.1.10.1 Optimal result
3.1.10.2 Mathematica [A] (verified)
3.1.10.3 Rubi [A] (verified)
3.1.10.4 Maple [A] (verified)
3.1.10.5 Fricas [A] (verification not implemented)
3.1.10.6 Sympy [F(-1)]
3.1.10.7 Maxima [F]
3.1.10.8 Giac [A] (verification not implemented)
3.1.10.9 Mupad [B] (verification not implemented)

3.1.10.1 Optimal result

Integrand size = 38, antiderivative size = 140 \[ \int \cos ^2(e+f x) (a+a \sin (e+f x))^{3/2} (c-c \sin (e+f x))^{5/2} \, dx=-\frac {a^2 \cos (e+f x) (c-c \sin (e+f x))^{7/2}}{15 c f \sqrt {a+a \sin (e+f x)}}-\frac {2 a \cos (e+f x) \sqrt {a+a \sin (e+f x)} (c-c \sin (e+f x))^{7/2}}{15 c f}-\frac {\cos (e+f x) (a+a \sin (e+f x))^{3/2} (c-c \sin (e+f x))^{7/2}}{6 c f} \]

output
-1/6*cos(f*x+e)*(a+a*sin(f*x+e))^(3/2)*(c-c*sin(f*x+e))^(7/2)/c/f-1/15*a^2 
*cos(f*x+e)*(c-c*sin(f*x+e))^(7/2)/c/f/(a+a*sin(f*x+e))^(1/2)-2/15*a*cos(f 
*x+e)*(c-c*sin(f*x+e))^(7/2)*(a+a*sin(f*x+e))^(1/2)/c/f
 
3.1.10.2 Mathematica [A] (verified)

Time = 7.57 (sec) , antiderivative size = 156, normalized size of antiderivative = 1.11 \[ \int \cos ^2(e+f x) (a+a \sin (e+f x))^{3/2} (c-c \sin (e+f x))^{5/2} \, dx=\frac {c^2 (-1+\sin (e+f x))^2 (a (1+\sin (e+f x)))^{3/2} \sqrt {c-c \sin (e+f x)} (75 \cos (2 (e+f x))+30 \cos (4 (e+f x))+5 \cos (6 (e+f x))+600 \sin (e+f x)+100 \sin (3 (e+f x))+12 \sin (5 (e+f x)))}{960 f \left (\cos \left (\frac {1}{2} (e+f x)\right )-\sin \left (\frac {1}{2} (e+f x)\right )\right )^5 \left (\cos \left (\frac {1}{2} (e+f x)\right )+\sin \left (\frac {1}{2} (e+f x)\right )\right )^3} \]

input
Integrate[Cos[e + f*x]^2*(a + a*Sin[e + f*x])^(3/2)*(c - c*Sin[e + f*x])^( 
5/2),x]
 
output
(c^2*(-1 + Sin[e + f*x])^2*(a*(1 + Sin[e + f*x]))^(3/2)*Sqrt[c - c*Sin[e + 
 f*x]]*(75*Cos[2*(e + f*x)] + 30*Cos[4*(e + f*x)] + 5*Cos[6*(e + f*x)] + 6 
00*Sin[e + f*x] + 100*Sin[3*(e + f*x)] + 12*Sin[5*(e + f*x)]))/(960*f*(Cos 
[(e + f*x)/2] - Sin[(e + f*x)/2])^5*(Cos[(e + f*x)/2] + Sin[(e + f*x)/2])^ 
3)
 
3.1.10.3 Rubi [A] (verified)

Time = 0.88 (sec) , antiderivative size = 145, normalized size of antiderivative = 1.04, number of steps used = 8, number of rules used = 8, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.211, Rules used = {3042, 3320, 3042, 3219, 3042, 3219, 3042, 3217}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \cos ^2(e+f x) (a \sin (e+f x)+a)^{3/2} (c-c \sin (e+f x))^{5/2} \, dx\)

\(\Big \downarrow \) 3042

\(\displaystyle \int \cos (e+f x)^2 (a \sin (e+f x)+a)^{3/2} (c-c \sin (e+f x))^{5/2}dx\)

\(\Big \downarrow \) 3320

\(\displaystyle \frac {\int (\sin (e+f x) a+a)^{5/2} (c-c \sin (e+f x))^{7/2}dx}{a c}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {\int (\sin (e+f x) a+a)^{5/2} (c-c \sin (e+f x))^{7/2}dx}{a c}\)

\(\Big \downarrow \) 3219

\(\displaystyle \frac {\frac {2}{3} a \int (\sin (e+f x) a+a)^{3/2} (c-c \sin (e+f x))^{7/2}dx-\frac {a \cos (e+f x) (a \sin (e+f x)+a)^{3/2} (c-c \sin (e+f x))^{7/2}}{6 f}}{a c}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {\frac {2}{3} a \int (\sin (e+f x) a+a)^{3/2} (c-c \sin (e+f x))^{7/2}dx-\frac {a \cos (e+f x) (a \sin (e+f x)+a)^{3/2} (c-c \sin (e+f x))^{7/2}}{6 f}}{a c}\)

\(\Big \downarrow \) 3219

\(\displaystyle \frac {\frac {2}{3} a \left (\frac {2}{5} a \int \sqrt {\sin (e+f x) a+a} (c-c \sin (e+f x))^{7/2}dx-\frac {a \cos (e+f x) \sqrt {a \sin (e+f x)+a} (c-c \sin (e+f x))^{7/2}}{5 f}\right )-\frac {a \cos (e+f x) (a \sin (e+f x)+a)^{3/2} (c-c \sin (e+f x))^{7/2}}{6 f}}{a c}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {\frac {2}{3} a \left (\frac {2}{5} a \int \sqrt {\sin (e+f x) a+a} (c-c \sin (e+f x))^{7/2}dx-\frac {a \cos (e+f x) \sqrt {a \sin (e+f x)+a} (c-c \sin (e+f x))^{7/2}}{5 f}\right )-\frac {a \cos (e+f x) (a \sin (e+f x)+a)^{3/2} (c-c \sin (e+f x))^{7/2}}{6 f}}{a c}\)

\(\Big \downarrow \) 3217

\(\displaystyle \frac {\frac {2}{3} a \left (-\frac {a^2 \cos (e+f x) (c-c \sin (e+f x))^{7/2}}{10 f \sqrt {a \sin (e+f x)+a}}-\frac {a \cos (e+f x) \sqrt {a \sin (e+f x)+a} (c-c \sin (e+f x))^{7/2}}{5 f}\right )-\frac {a \cos (e+f x) (a \sin (e+f x)+a)^{3/2} (c-c \sin (e+f x))^{7/2}}{6 f}}{a c}\)

input
Int[Cos[e + f*x]^2*(a + a*Sin[e + f*x])^(3/2)*(c - c*Sin[e + f*x])^(5/2),x 
]
 
output
(-1/6*(a*Cos[e + f*x]*(a + a*Sin[e + f*x])^(3/2)*(c - c*Sin[e + f*x])^(7/2 
))/f + (2*a*(-1/10*(a^2*Cos[e + f*x]*(c - c*Sin[e + f*x])^(7/2))/(f*Sqrt[a 
 + a*Sin[e + f*x]]) - (a*Cos[e + f*x]*Sqrt[a + a*Sin[e + f*x]]*(c - c*Sin[ 
e + f*x])^(7/2))/(5*f)))/3)/(a*c)
 

3.1.10.3.1 Defintions of rubi rules used

rule 3042
Int[u_, x_Symbol] :> Int[DeactivateTrig[u, x], x] /; FunctionOfTrigOfLinear 
Q[u, x]
 

rule 3217
Int[Sqrt[(a_) + (b_.)*sin[(e_.) + (f_.)*(x_)]]*((c_) + (d_.)*sin[(e_.) + (f 
_.)*(x_)])^(n_), x_Symbol] :> Simp[-2*b*Cos[e + f*x]*((c + d*Sin[e + f*x])^ 
n/(f*(2*n + 1)*Sqrt[a + b*Sin[e + f*x]])), x] /; FreeQ[{a, b, c, d, e, f, n 
}, x] && EqQ[b*c + a*d, 0] && EqQ[a^2 - b^2, 0] && NeQ[n, -2^(-1)]
 

rule 3219
Int[((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_)*((c_) + (d_.)*sin[(e_.) + ( 
f_.)*(x_)])^(n_), x_Symbol] :> Simp[(-b)*Cos[e + f*x]*(a + b*Sin[e + f*x])^ 
(m - 1)*((c + d*Sin[e + f*x])^n/(f*(m + n))), x] + Simp[a*((2*m - 1)/(m + n 
))   Int[(a + b*Sin[e + f*x])^(m - 1)*(c + d*Sin[e + f*x])^n, x], x] /; Fre 
eQ[{a, b, c, d, e, f, n}, x] && EqQ[b*c + a*d, 0] && EqQ[a^2 - b^2, 0] && I 
GtQ[m - 1/2, 0] &&  !LtQ[n, -1] &&  !(IGtQ[n - 1/2, 0] && LtQ[n, m]) &&  !( 
ILtQ[m + n, 0] && GtQ[2*m + n + 1, 0])
 

rule 3320
Int[cos[(e_.) + (f_.)*(x_)]^(p_)*((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_ 
.)*((c_) + (d_.)*sin[(e_.) + (f_.)*(x_)])^(n_.), x_Symbol] :> Simp[1/(a^(p/ 
2)*c^(p/2))   Int[(a + b*Sin[e + f*x])^(m + p/2)*(c + d*Sin[e + f*x])^(n + 
p/2), x], x] /; FreeQ[{a, b, c, d, e, f, n, p}, x] && EqQ[b*c + a*d, 0] && 
EqQ[a^2 - b^2, 0] && IntegerQ[p/2]
 
3.1.10.4 Maple [A] (verified)

Time = 0.18 (sec) , antiderivative size = 92, normalized size of antiderivative = 0.66

method result size
default \(\frac {\sqrt {-c \left (\sin \left (f x +e \right )-1\right )}\, \sqrt {a \left (1+\sin \left (f x +e \right )\right )}\, c^{2} a \left (5 \left (\cos ^{5}\left (f x +e \right )\right )+6 \left (\cos ^{3}\left (f x +e \right )\right ) \sin \left (f x +e \right )+8 \cos \left (f x +e \right ) \sin \left (f x +e \right )+16 \tan \left (f x +e \right )-5 \sec \left (f x +e \right )\right )}{30 f}\) \(92\)

input
int(cos(f*x+e)^2*(a+a*sin(f*x+e))^(3/2)*(c-c*sin(f*x+e))^(5/2),x,method=_R 
ETURNVERBOSE)
 
output
1/30/f*(-c*(sin(f*x+e)-1))^(1/2)*(a*(1+sin(f*x+e)))^(1/2)*c^2*a*(5*cos(f*x 
+e)^5+6*cos(f*x+e)^3*sin(f*x+e)+8*cos(f*x+e)*sin(f*x+e)+16*tan(f*x+e)-5*se 
c(f*x+e))
 
3.1.10.5 Fricas [A] (verification not implemented)

Time = 0.32 (sec) , antiderivative size = 102, normalized size of antiderivative = 0.73 \[ \int \cos ^2(e+f x) (a+a \sin (e+f x))^{3/2} (c-c \sin (e+f x))^{5/2} \, dx=\frac {{\left (5 \, a c^{2} \cos \left (f x + e\right )^{6} - 5 \, a c^{2} + 2 \, {\left (3 \, a c^{2} \cos \left (f x + e\right )^{4} + 4 \, a c^{2} \cos \left (f x + e\right )^{2} + 8 \, a c^{2}\right )} \sin \left (f x + e\right )\right )} \sqrt {a \sin \left (f x + e\right ) + a} \sqrt {-c \sin \left (f x + e\right ) + c}}{30 \, f \cos \left (f x + e\right )} \]

input
integrate(cos(f*x+e)^2*(a+a*sin(f*x+e))^(3/2)*(c-c*sin(f*x+e))^(5/2),x, al 
gorithm="fricas")
 
output
1/30*(5*a*c^2*cos(f*x + e)^6 - 5*a*c^2 + 2*(3*a*c^2*cos(f*x + e)^4 + 4*a*c 
^2*cos(f*x + e)^2 + 8*a*c^2)*sin(f*x + e))*sqrt(a*sin(f*x + e) + a)*sqrt(- 
c*sin(f*x + e) + c)/(f*cos(f*x + e))
 
3.1.10.6 Sympy [F(-1)]

Timed out. \[ \int \cos ^2(e+f x) (a+a \sin (e+f x))^{3/2} (c-c \sin (e+f x))^{5/2} \, dx=\text {Timed out} \]

input
integrate(cos(f*x+e)**2*(a+a*sin(f*x+e))**(3/2)*(c-c*sin(f*x+e))**(5/2),x)
 
output
Timed out
 
3.1.10.7 Maxima [F]

\[ \int \cos ^2(e+f x) (a+a \sin (e+f x))^{3/2} (c-c \sin (e+f x))^{5/2} \, dx=\int { {\left (a \sin \left (f x + e\right ) + a\right )}^{\frac {3}{2}} {\left (-c \sin \left (f x + e\right ) + c\right )}^{\frac {5}{2}} \cos \left (f x + e\right )^{2} \,d x } \]

input
integrate(cos(f*x+e)^2*(a+a*sin(f*x+e))^(3/2)*(c-c*sin(f*x+e))^(5/2),x, al 
gorithm="maxima")
 
output
integrate((a*sin(f*x + e) + a)^(3/2)*(-c*sin(f*x + e) + c)^(5/2)*cos(f*x + 
 e)^2, x)
 
3.1.10.8 Giac [A] (verification not implemented)

Time = 0.31 (sec) , antiderivative size = 150, normalized size of antiderivative = 1.07 \[ \int \cos ^2(e+f x) (a+a \sin (e+f x))^{3/2} (c-c \sin (e+f x))^{5/2} \, dx=\frac {16 \, {\left (10 \, a c^{2} \mathrm {sgn}\left (\cos \left (-\frac {1}{4} \, \pi + \frac {1}{2} \, f x + \frac {1}{2} \, e\right )\right ) \mathrm {sgn}\left (\sin \left (-\frac {1}{4} \, \pi + \frac {1}{2} \, f x + \frac {1}{2} \, e\right )\right ) \sin \left (-\frac {1}{4} \, \pi + \frac {1}{2} \, f x + \frac {1}{2} \, e\right )^{12} - 24 \, a c^{2} \mathrm {sgn}\left (\cos \left (-\frac {1}{4} \, \pi + \frac {1}{2} \, f x + \frac {1}{2} \, e\right )\right ) \mathrm {sgn}\left (\sin \left (-\frac {1}{4} \, \pi + \frac {1}{2} \, f x + \frac {1}{2} \, e\right )\right ) \sin \left (-\frac {1}{4} \, \pi + \frac {1}{2} \, f x + \frac {1}{2} \, e\right )^{10} + 15 \, a c^{2} \mathrm {sgn}\left (\cos \left (-\frac {1}{4} \, \pi + \frac {1}{2} \, f x + \frac {1}{2} \, e\right )\right ) \mathrm {sgn}\left (\sin \left (-\frac {1}{4} \, \pi + \frac {1}{2} \, f x + \frac {1}{2} \, e\right )\right ) \sin \left (-\frac {1}{4} \, \pi + \frac {1}{2} \, f x + \frac {1}{2} \, e\right )^{8}\right )} \sqrt {a} \sqrt {c}}{15 \, f} \]

input
integrate(cos(f*x+e)^2*(a+a*sin(f*x+e))^(3/2)*(c-c*sin(f*x+e))^(5/2),x, al 
gorithm="giac")
 
output
16/15*(10*a*c^2*sgn(cos(-1/4*pi + 1/2*f*x + 1/2*e))*sgn(sin(-1/4*pi + 1/2* 
f*x + 1/2*e))*sin(-1/4*pi + 1/2*f*x + 1/2*e)^12 - 24*a*c^2*sgn(cos(-1/4*pi 
 + 1/2*f*x + 1/2*e))*sgn(sin(-1/4*pi + 1/2*f*x + 1/2*e))*sin(-1/4*pi + 1/2 
*f*x + 1/2*e)^10 + 15*a*c^2*sgn(cos(-1/4*pi + 1/2*f*x + 1/2*e))*sgn(sin(-1 
/4*pi + 1/2*f*x + 1/2*e))*sin(-1/4*pi + 1/2*f*x + 1/2*e)^8)*sqrt(a)*sqrt(c 
)/f
 
3.1.10.9 Mupad [B] (verification not implemented)

Time = 12.08 (sec) , antiderivative size = 122, normalized size of antiderivative = 0.87 \[ \int \cos ^2(e+f x) (a+a \sin (e+f x))^{3/2} (c-c \sin (e+f x))^{5/2} \, dx=\frac {a\,c^2\,\sqrt {a\,\left (\sin \left (e+f\,x\right )+1\right )}\,\sqrt {-c\,\left (\sin \left (e+f\,x\right )-1\right )}\,\left (75\,\cos \left (e+f\,x\right )+105\,\cos \left (3\,e+3\,f\,x\right )+35\,\cos \left (5\,e+5\,f\,x\right )+5\,\cos \left (7\,e+7\,f\,x\right )+700\,\sin \left (2\,e+2\,f\,x\right )+112\,\sin \left (4\,e+4\,f\,x\right )+12\,\sin \left (6\,e+6\,f\,x\right )\right )}{960\,f\,\left (\cos \left (2\,e+2\,f\,x\right )+1\right )} \]

input
int(cos(e + f*x)^2*(a + a*sin(e + f*x))^(3/2)*(c - c*sin(e + f*x))^(5/2),x 
)
 
output
(a*c^2*(a*(sin(e + f*x) + 1))^(1/2)*(-c*(sin(e + f*x) - 1))^(1/2)*(75*cos( 
e + f*x) + 105*cos(3*e + 3*f*x) + 35*cos(5*e + 5*f*x) + 5*cos(7*e + 7*f*x) 
 + 700*sin(2*e + 2*f*x) + 112*sin(4*e + 4*f*x) + 12*sin(6*e + 6*f*x)))/(96 
0*f*(cos(2*e + 2*f*x) + 1))